SABRE
Protecting Bitcoin against Routing Attacks

Maria Apostolaki
ETH Zürich

Joint work with Gian Marti, Jan Müller and Laurent Vanbever
Partition Attack

An adversary splits the Bitcoin network in two disjoint components.
Partition attack is general, dangerous, effective, practical
Partition attack is general, dangerous, effective, practical

Any Blockchain system is vulnerable
Partition attack is general, **dangerous**, effective, practical

Any Blockchain system is vulnerable

Double-spending, Revenue Loss, DoS
Partition attack is general, dangerous, **effective**, practical

Any Blockchain system is vulnerable

Double-spending, Revenue Loss, DoS

50-50 partition is feasible
Partition attack is general, dangerous, effective, \textit{practical}

Any Blockchain system is vulnerable

Double-spending, Revenue Loss, DoS

50–50 partition is feasible

\textit{Any network in the world is a possible attacker}
In 2017 we uncovered the practicality and effectiveness of routing attacks in Bitcoin

Hijacking Bitcoin: Routing Attacks on Cryptocurrencies

https://btc-hijack.ethz.ch

Maria Apostolaki ETH Zürich apmaria@ethz.ch
Aviv Zohar The Hebrew University aviz@cs.huji.ac.il
Laurent Vanbever ETH Zürich lvvanbever@ethz.ch

Abstract—As the most successful cryptocurrency to date, Bitcoin constitutes a target of choice for attackers. While many attack vectors have already been uncovered, one important vector has been left out though: attacking the currency via the Internet routing infrastructure itself. Indeed, by manipulating routing advertisements (BGP hijacks) or by naturally intercepting traffic, Autonomous Systems (ASes) can intercept and manipulate a large fraction of Bitcoin traffic.

This paper presents the first taxonomy of routing attacks and their impact on Bitcoin, considering both small-scale attacks, targeting individual nodes, and large-scale attacks, targeting the network as a whole. While challenging, we show that two key properties make routing attacks practical: (i) the efficiency of routing manipulation; and (ii) the significant centralization of Bitcoin in terms of mining and routing. Specifically, we find that any network attacker can hijack few (<100) BGP prefixes to isolate ~50% of the mining power—even when considering that mining pools are heavily multi-homed. We also show that on-path network attackers can considerably slow down block propagation by interfering with few key Bitcoin messages.

We demonstrate the feasibility of each attack against the deployed Bitcoin software. We also quantify their effectiveness on the current Bitcoin topology using data collected from a Bitcoin supernode combined with BGP routing data.

The potential damage to Bitcoin is worrying. By isolating parts of the network or delaying block propagation, attackers can cause revenue loss, double-spend, or denigrate Bitcoin with a DoS attack. Both Bitcoin and its clients can be inertial in their choice of routes, making them susceptible to routing attacks.

One important attack vector has been overlooked though: attacking Bitcoin via the Internet infrastructure using routing attacks. As Bitcoin connections are routed over the Internet—in clear text and without integrity checks—any third-party on the forwarding path can eavesdrop, drop, modify, inject, or delay Bitcoin messages such as blocks or transactions. Detecting such attackers is challenging as it requires inferring the exact forwarding paths taken by the Bitcoin traffic using measurements (e.g., traceroute) or routing data (BGP announcements), both of which can be forged [41]. Even ignoring detectability, mitigating network attacks is also hard as it is essentially a human-driven process consisting of filtering, routing around or disconnecting the attacker. As an illustration, it took Youtube close to 3 hours to locate and resolve rogue BGP announcements targeting its infrastructure in 2008 [6]. More recent examples of routing attacks such as [51] (resp. [52]) took 9 (resp. 2) hours to resolve in November (resp. June) 2015.

One of the reasons why routing attacks have been overlooked in Bitcoin is that they are often considered too challenging to be practical. Indeed, perturbing a vast peer-to-peer network is a daunting task. However, despite the challenges, these attacks are not only effective but also hard to detect. Our results show that Bitcoin is vulnerable to routing attacks and that further research is needed to develop effective defenses.
Bitcoin is a distributed network of nodes (Bitcoin clients)
Bitcoin clients establish random connections
Bitcoin clients exchange Blocks
Blocks contain the latest transactions
Bitcoin clients exchange Blocks
Bitcoin clients exchange **Blocks**
until all clients have the same view of the transactions
What can go wrong?
Bitcoin connections are routed over the Internet using BGP, the default Internet routing protocol.
The Internet is composed of Autonomous Systems
Each Bitcoin client n has an IP
AS H creates a BGP advertisement for n’s IP prefix

82.0.0.3

Path:
BGP propagates advertisements in the Internet

20
BGP propagates advertisements in the Internet
AS I can directly reach AS H
BGP does not check the *legitimacy* of advertisements
Attacker creates a fake BGP advertisement
Attacker attracts traffic destined to AS H using BGP hijacking
Attacker attracts connections with BGP hijacking
Attacker drops connections crossing the partition
A new block in the grey zone cannot be propagated further
SABRE:

Additional channel that is engineered to allow clients to exchange blocks, even if the Bitcoin network is partitioned
SABRE:

Additional channel that is engineered to allow clients to exchange blocks, even if the Bitcoin network is partitioned

... without the need to deploy secure routing protocols
SABRE does not affect any of the regular Bitcoin clients
SABRE is an overlay network of special Bitcoin clients
SABRE nodes are connected to each other
Each Bitcoin client connects to at least one SABRE node
SABRE protects the Bitcoin network from partition attacks
Block is propagated via the SABRE network
The attacker might try to fight back by attacking SABRE itself
The attacker might try to fight back by attacking SABRE itself

Attacker knows SABRE’s locations and code

- BGP hijacks against SABRE nodes
- Malicious requests to take down SABRE nodes
SABRE is an additional overlay network which allows communication, even if the Bitcoin network is partitioned.
SABRE is an additional overlay network which allows communication, even if the Bitcoin network is partitioned

SABRE needs to…

- secure relay-to-relay connections
SABRE is an additional overlay network which allows communication, even if the Bitcoin network is partitioned

SABRE needs to…

☐ secure relay-to-relay connections

☐ remain reachable by Bitcoin clients
SABRE is an additional overlay network which allows communication, even if the Bitcoin network is partitioned

SABRE needs to...

- secure relay-to-relay connections
- remain reachable by Bitcoin clients
- relay blocks seamlessly
SABRE is an additional overlay network which allows communication, even if the Bitcoin network is partitioned.

SABRE needs to…

- secure relay-to-relay connections
- remain reachable by Bitcoin clients
- relay blocks seamlessly
SABRE is an additional overlay network which allows communication, even if the Bitcoin network is partitioned.

SABRE needs to...

- secure relay-to-relay connections
- remain reachable by Bitcoin clients
- relay blocks
SABRE
Protecting Bitcoin against Routing Attacks

SABRE location
inherently safe locations

SABRE design
software/hardware

Deployability
deployment opportunities
SABRE
Protecting Bitcoin against Routing Attacks

SABRE location
inherently safe locations

SABRE design
software/hardware

Deployability
deployment opportunities
SABRE is an additional overlay network which allows communication, even if the Bitcoin network is partitioned

SABRE needs to…

- secure relay-to-relay connections
- remain reachable by Bitcoin clients
- relay blocks
SABRE is an additional overlay network which allows communication, even if the Bitcoin network is partitioned.

SABRE needs to...

- secure relay-to-relay connections
- remain reachable by Bitcoin clients
- relay blocks
SABRE selects nodes that satisfy three properties

- Each node is hosted in /24 IP prefixes
- Nodes are connected via financially & distance-wise optimal paths
- Relay graph is k-connected
SABRE selects nodes that satisfy three properties

- Each node is hosted in /24 IP prefixes.
- Nodes are connected via financially & distance-wise optimal paths.
- Relay graph is k-connected.

Longer prefix hijacks are not possible.
Relays A and relay B are hosted in ASes with customer–provider relationship
AS A receives a BGP advertisement from AS B for the prefix of relay B
Relay A sends to relay B via a direct **expensive** link
AS A has a malicious or compromised neighbor AS with a least expensive link

Path: B
Attacker advertises AS B’s prefix to AS A
AS A prefers the path via the attacker, because it is less expensive.
The attacker can **disconnect** the relays.
SABRE selects nodes that satisfy three properties

- each node is hosted in /24 IP prefixes
- nodes are connected via financially & distance-wise optimal paths
- relay graph is k-connected

no strictly more preferred path exists
Relays A, B are hosted in ASes with a more cost effective agreement.
Attacker’s advertisement is less preferred, thus attacker cannot discontent the relays.
Agreements can be revoked, link can be cut...
Peering agreement can be revoked, link can be cut … Relay A will inevitably send traffic via ASC
SABRE selects nodes that satisfy three properties

- each node is hosted in /24 IP prefixes
- nodes are connected via financially & distance-wise optimal paths
- relay graph is k-connected

relay connectivity is not disrupted by any k-1 cuts
2-k connected graph retains connectivity even if one peering link is cut
If the link between relays A and B is cut
If the link between relays A and B is cut
Relays A, B can still exchange blocks via the relay C
SABRE is an additional overlay network which allows communication, even if the Bitcoin network is partitioned.

SABRE needs to:

- ☑ secure relay-to-relay connections
- ❏ remain reachable by Bitcoin clients
- ❏ relay blocks
SABRE positions nodes s.t. most clients are protected from each potential attacker by at least one relay node

see paper for more
SABRE is an additional overlay network which allows communication, even if the Bitcoin network is partitioned.

SABRE needs to...

- secure relay-to-relay connections
- remain reachable by Bitcoin clients

- relay blocks
We evaluate SABRE’s network design by its effectiveness against two attack types
We evaluate SABRE’s network design by its effectiveness against two attack types

Network-wide attacks
We evaluate SABRE’s network design by its effectiveness against two attack types

- Network-wide attacks
- Node-level attacks
We evaluate SABRE’s network design by its effectiveness against two attack types.

- **Network-wide attacks**: What is the largest partition each single AS can create?
- **Node-level attacks**: How many clients are protected against isolation?
What is the largest partition each single AS can create?
What is the largest partition each single AS can create?

- current network

any single AS in the world can create partitions of >90% of the clients
What is the largest partition each single AS can create?

- Current network: any single AS in the world can create partitions of >90% of the clients.
- 6 SABRE nodes 3-connected: only 3% of ASes in the world can create a partition of 15%-30%.

See paper for more results.
We evaluate SABRE’s network design by its effectiveness against two attack types.

- **Network-wide attacks**: What is the largest partition each single AS can create?
- **Node-level attacks**: How many clients are protected against isolation?
How many clients are protected against isolation?
How many *clients* are protected against isolation?

- **current network**
 - at most 10% of Bitcoin clients are protected from 50% of ASes
How many clients are protected against isolation?

- current network
 at most 10% of Bitcoin clients are protected from 50% of ASes

- 6 SABRE nodes 5–k connected
 89.5% of Bitcoin clients are protected from 92.5% of ASes

see paper for more results
SABRE
Protecting Bitcoin against Routing Attacks

SABRE location
inherently safe locations

SABRE design
software/hardware

Deployability
deployment opportunities
SABRE is an additional overlay network which allows communication, even if the Bitcoin network is partitioned.

SABRE needs to...

- ✔ secure relay-to-relay connections
- ✔ remain reachable by Bitcoin clients
- □ relay blocks
A SABRE node performs four operations

- maintains connections with Bitcoin clients
- receives blocks
- verifies blocks
- transmits blocks to Bitcoin clients
Two ways to deploy a SABRE node
Two ways to deploy a SABRE node

Private deployment

Serving few predefined clients
Two ways to deploy a SABRE node

- Private deployment: Serving few predefined clients
- Public deployment: Serving all Bitcoin clients
Two ways to deploy a SABRE node

Serving few predefined clients
Private SABRE nodes need not scale

SABRE nodes need to

- establish connection to a predefined set of IPs
- be unreachable for unknown clients
- receive and relay blocks
Private SABRE nodes need not scale

SABRE nodes need to:

- establish connection to a predefined set of IPs
- be unreachable for unknown clients
- receive and relay blocks

regular Bitcoin client with few whitelisted IPs is sufficient
Two ways to deploy a SABRE node

Private deployment
Serving few predefined clients

Public deployment
Serving all Bitcoin clients
Public SABRE nodes need to scale

SABRE nodes need to

- maintain thousands of connections
- distinguish spoofing and malicious request
- receive, verify and relay blocks fast
Public SABRE nodes need to scale

SABRE nodes need to

- maintain thousands of connections
- distinguish spoofing and malicious request
- receive, verify and relay blocks fast

Simple software implementation would not suffice
SABRE can leverage programmable data planes

SABRE DP
SABRE DP allows relay nodes to deal with high malicious or benign load
SABRE DP allows relay nodes to deal with high malicious or benign load

is faster than any server optimization

can serve few Billions of packets per second
SABRE DP allows relay nodes to deal with high malicious or benign load is faster than any server optimization protects against malicious requests

Dynamic Black/White lists Protection from spoofing & Repetitive request
SABRE DP allows relay nodes to deal with high malicious or benign load is faster than any server optimization protects against malicious requests minimum software interaction almost all clients are seven directly from hardware
Not all operations can be done in hardware
Not all operations can be done in hardware
SABRE node has both software and hardware parts
SABRE is an additional overlay network which allows communication, even if the Bitcoin network is partitioned.

SABRE needs to...

- ☑ secure relay-to-relay connections
- ☑ remain reachable by Bitcoin clients
- ☑ relay blocks
SABRE
Protecting Bitcoin against Routing Attacks

SABRE location
inherently safe locations

SABRE design
software/hardware

Deployability
deployment opportunities
Multiple deployment scenarios
SABRE’s deployment is practical

bootstrap with a software-only SABRE

decreased cost
allows private deployments
SABRE’s deployment is practical

bootstrap with a software-only SABRE

multiple SABRE relays can co-exist

each party (e.g. pool) can deploy their own SABRE
SABRE’s deployment is practical

bootstrap with a software-only SABRE

multiple SABRE relays can co-exist

community’s consensus is not required

clients can connect to both relays and regular clients
SABRE’s deployment is practical

bootstrap with a software-only SABRE

multiple SABRE relays can co-exist

community’s consensus is not required

network design applies to other relays

e.g., FIBRE, FALCON can relocate their nodes according to SABRE properties
SABRE
Protecting Bitcoin against Routing Attacks

SABRE location
inherently safe locations

SABRE design
software/hardware

Deployability
deployment opportunities
Few SABRE relays can protect Bitcoin from partitions by placing relay nodes in selected locations.

SABRE can operate seamlessly under high load by serving clients directly in hardware.

SABRE can be partially deployed and benefit early adopters e.g., each pool can deploy SABRE in software.
SABRE vs FALCON & FIBRE

<table>
<thead>
<tr>
<th></th>
<th>SABRE</th>
<th>FALCON</th>
<th>FIBRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>longer prefix</td>
<td>protected</td>
<td>vulnerable</td>
<td>vulnerable</td>
</tr>
<tr>
<td>hijack</td>
<td>all nodes in /24</td>
<td>no node in /24</td>
<td>no node in /24</td>
</tr>
<tr>
<td>same prefix</td>
<td>protected</td>
<td># possible</td>
<td># possible</td>
</tr>
<tr>
<td>hijack</td>
<td></td>
<td>attackers</td>
<td>attackers</td>
</tr>
</tbody>
</table>